36 research outputs found

    In vitro effects of oestradiol on galanin gene expression in rat anterior pituitary cells.

    No full text
    While the pituitary galanin gene is highly responsive to oestrogen stimulation in vivo, in vitro effects of oestrogens on pituitary galanin gene expression have been less studied. We therefore examined the short-term effects of 17beta-oestradiol on galanin synthesis by dispersed rat anterior pituitary cell cultures and investigated the mechanisms by which oestrogens may modulate galanin gene expression. 17beta-oestradiol increased galanin mRNA expression in a dose-dependent manner, with a maximal increase observed at a concentration of 10-7 M. The 17beta-oestradiol (10-7 M)-induced increase in galanin mRNA expression varied from 3- to 20-fold (average 12-fold) depending upon the experiments and was also time-dependent, reaching significance after 6 h. A 1-h exposure of anterior pituitary cells to 17beta-oestradiol was sufficient to induce markedly galanin mRNA expression after 24 h (by 16-fold) and 48 h (by 25-fold). Tamoxifen administered simultaneously with or following 17beta-oestradiol treatment completely abolished the oestrogen-induced increase of galanin mRNA levels. Cycloheximide (10 microg/ml), a protein synthesis inhibitor, also blocked 17beta-oestradiol-induced galanin gene expression. Using transcription blockade by actinomycin D, we observed similar decreases of pituitary galanin mRNA concentrations, in the presence and absence of 17beta-oestradiol, implying no oestrogen effect on mRNA stability. We conclude that oestrogens stimulate rat pituitary galanin gene expression, mainly through a transcriptional mechanism, and that this effect requires persistent binding of the hormone to its nuclear receptor and newly synthesized protein intermediates

    Insulin inhibits glucocorticoid-induced stimulation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene transcription

    Get PDF
    6-Phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. Transcription of the mRNA encoding rat liver PFK-2/FBPase-2 is stimulated by insulin and by glucocorticoids in rat hepatoma cells. We show here that insulin can also prevent and reverse this glucocorticoid effect. The inhibitory effect of insulin is independent of extracellular glucose and does not require ongoing protein synthesis. We conclude that insulin exerts opposite effects on PFK-2/FBPase-2 gene transcription depending on the hormonal context

    p21-Activated Kinase 1 Is Permissive for the Skeletal Muscle Hypertrophy Induced by Myostatin Inhibition

    Get PDF
    Skeletal muscle, the most abundant tissue in the body, plays vital roles in locomotion and metabolism. Understanding the cellular processes that govern regulation of muscle mass and function represents an essential step in the development of therapeutic strategies for muscular disorders. Myostatin, a member of the TGF-beta family, has been identified as a negative regulator of muscle development. Indeed, its inhibition induces an extensive skeletal muscle hypertrophy requiring the activation of Smad 1/5/8 and the Insulin/IGF-I signaling pathway, but whether other molecular mechanisms are involved in this process remains to be determined. Using transcriptomic data from various Myostatin inhibition models, we identified Pak1 as a potential mediator of Myostatin action on skeletal muscle mass. Our results show that muscle PAK1 levels are systematically increased in response to Myostatin inhibition, parallel to skeletal muscle mass, regardless of the Myostatin inhibition model. Using Pak1 knockout mice, we investigated the role of Pak1 in the skeletal muscle hypertrophy induced by different approaches of Myostatin inhibition. Our findings show that Pak1 deletion does not impede the skeletal muscle hypertrophy magnitude in response to Myostatin inhibition. Therefore, Pak1 is permissive for the skeletal muscle mass increase caused by Myostatin inhibition.Peer reviewe

    IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA.

    No full text
    Myofibrillar protein loss occurring in catabolic situations is considered to be mediated by the release of proinflammatory cytokines and associated with a decrease in circulating and muscle levels of insulin-like growth factor I (IGF-I). In this paper, we investigated whether the C(2)C(12) myotube atrophy caused in vitro by TNF-alpha/IFN-gamma cytokines might be reversed by exogenous IGF-I. Our results showed that, despite the presence of TNF-alpha/IFN-gamma, IGF-I retained its full ability to induce the phosphorylation of Akt, Foxo3a, and GSK-3beta (respectively, 16-fold, 9-fold, and 2-fold) together with a decrease in atrogin-1 mRNA (-39%, P < 0.001). Although this ubiquitin ligase has been reported to accelerate the degradation of MyoD, a myogenic transcription factor driving the transcription of myosin heavy chain (MHC), IGF-I failed to blunt the reduction of MyoD and MHC caused by TNF-alpha/IFN-gamma. Moreover, IGF-I only very slightly attenuated the myotube atrophy induced by TNF-alpha/IFN-gamma (TNF-alpha/IFN-gamma 15.48 mum alone vs. TNF-alpha/IFN-gamma/IGF-I 16.97 mum, P < 0.001). In conclusion, our data show that IGF-I does not reverse the myotube atrophy induced by TNF-alpha/IFN-gamma despite the phosphorylation of Foxo and GSK-3beta and the downregulation of atrogin-1 mRNA. Our study suggests therefore that factors other than IGF-I decrease are responsible for the muscle atrophy caused by proinflammatory cytokines

    Role of IGF-I in follistatin-induced skeletal muscle hypertrophy

    Get PDF
    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growt

    Urotensin II and urocortin trigger the expression of myostatin, a negative regulator of cardiac growth, in cardiomyocytes.

    No full text
    Urotensin II (UII) and urocortin (UCN) are potent contributors to the physiopathology of heart failure. Our study investigated the effects of UII and UCN on the expression of myostatin (Mstn) in primary culture of adult cardiomyocytes. Adult rat cardiomyocytes were stimulated for 48 h with UII and UCN. Cell size and protein content were determined. Mstn gene expression was determined by real time quantitative polymerase chain reaction. Treatment with UII and UCN stimulates hypertrophy of adult cardiomyocytes. This effect was associated with a twofold increase of Mstn gene expression. We have established for the first time that the two hypertrophic peptides UII and UCN stimulate the expression of Mstn

    Failure of exogenous IGF-I to restore normal growth in rats submitted to dietary zinc deprivation.

    No full text
    Dietary zinc deficiency in rats causes growth retardation associated with decreased circulating IGF-I concentrations. To investigate the potential role of low IGF-I in this condition, we attempted to reverse the growth failure by administration of exogenous IGF-I. Rats were fed for 4 weeks a zinc-deficient diet (ZD, Zn 0 ppm) or were pair-fed a zinc-normal diet (PF, Zn 75 ppm). We compared the anabolic action of recombinant human (rh) IGF-I infused at the dose of 120 microg/day for the last experimental week in ZD, PF and freely fed control (CTRL) rats. Zinc deficiency caused growth stunting (weight gain 47% of PF; P<0.001), decreased circulating IGF-I (52% of PF; P<0.01) and liver IGF-I mRNA (67% of PF; P<0.01). Serum insulin-like growth factor-binding protein-3 (IGFBP-3) assessed by ligand blot was also reduced in ZD rats (65% of PF; P<0. 01). While exogenous IGF-I increased body weight in CTRL (+12 g; P<0. 01) and PF (+7 g; not significant) animals, growth was not stimulated in ZD rats (-1.5 g) in comparison with the corresponding untreated groups. However, circulating IGF-I and IGFBP-3 levels were restored by IGF-I infusion to levels similar to those in untreated CTRL rats. In conclusion, restoration of normal circulating levels of IGF-I and IGFBP-3 by rhIGF-I infusion fails to reverse the growth retardation induced by zinc deficiency. These results suggest that growth retardation related to zinc deficiency is not only caused by low serum IGF-I concentrations, but also by inhibition of the anabolic actions of IGF-I
    corecore